Refine Your Search

Topic

Author

Search Results

Technical Paper

Matching Between Food Supply and Human Nutritional Requirements in an Earth-Based Advanced Life Support System (ALSS) Test Bed

2005-07-11
2005-01-2819
A linear programming model has been constructed to develop a cultivation plan for habitation experiments using a two-person crew in Closed Ecological Experiment Facilities (CEEF), which is an earth based integration demonstration test bed of Advanced Life Support System (ALSS), under constraints such as a limited cultivation area and various nutritional requirements. The optimized area was 129.14 m2. According to the results, the optimized cultivation plan was then implemented in a habitation experiment in the CEEF during FY2004 with some modification to meet requirements from menu formulation. Results of the cultivation experiment, also during FY2004, showed feasibility of the plantation plan in the view point of nutrition supply, though errors between expected and observed productivities varied from −37 % to +267 %.
Technical Paper

Paper Production in an Advanced Life Support System (ALSS)

2005-07-11
2005-01-2929
This paper introduces a concept and a design to supply paper products for an earth based Advanced Life Support System (ALSS) test bed and it shows some results of paper production trials on the ALSS using inedible biomass. Rice plants (i.e. straw and roots), and soybean stems were pulped by boiling and/or alkali soaking and a mechanical processing method. Paper could be produced from both and exhibited different characteristics. Paper with quality suitable for hygienic tissue could be obtained and very absorbent paper was also possible. A rapid pulping method without a chemical process was also investigated. A potential for reducing chemical consumption, liquid waste and labor cost of paper production in the ALSS was demonstrated.
Technical Paper

Estimation of Flows of Carbon and Oxygen in the CEEF System Based on Data Collected in a Stable Phase of Sequential Crop Cultivation Lasting More than 100 Days

2005-07-11
2005-01-3108
Closed habitation experiments are to be carried out using Closed Ecology Experiment Facilities (CEEF) from 2005 to 2009. The last target of duration of closed habitation is four months. Preliminary study and testing have been conducted in order to start the closed habitation experiments. In 2004 as the last year of the preliminary test phase for the 2005–2009 experiments, periodical harvesting from staggered cultivation of 23 crops including rice, soybean, peanut, and sugar beet was continued during 103 days. In order to balance with metabolisms of humans (named as “eco-nauts”) and animals, it is necessary to stabilize production of edible and inedible biomass, CO2 uptake and O2 production of crops. Although biomass production decreased rapidly during first five weeks of the 103-day period, it was relatively stable during last ten weeks. Average major foodstuffs in the harvested edible biomass met the requirement of two Eco-nauts although several minor ingredients were insufficient.
Technical Paper

Estimation of Energy Requirements of Eco-nauts in the Closed Ecology Experiment Facilities (CEEF)

2005-07-11
2005-01-3004
Preliminary seven-day habitation experiments without complete closure of the habitation module were performed in the Closed Ecology Experiment Facilities (CEEF) to obtain information for the closed habitation and to prepare for the actual closed habitation experiments to be launched in September 2005. Energy requirements have been estimated for habitant candidates in closed habitation experiments (to be called Eco-nauts). This paper presents the calculations of Eco-nauts' energy requirements using records of life activities during the preliminary experiments and compares them with the expected energy supply from the CEEF.
Technical Paper

Workloads and Environment of Closed Habitation Experiments in CEEF (Closed Ecology Experiment Facilities) and Physio-Psychological Changes in Habitants (Eco-Nauts) During the Experiments

2005-07-11
2005-01-3005
The Closed Ecological Experimental Facilities (CEEF), designed to simulate material circulation, is an artificial closed agricultural ecosystem with plants, humans and animals. In the experiments starting from FY2005, habitants referred to as eco-nauts will be exposed to complex workloads and various CEEF environmental factors, which may influence their physio-psychological state, and lower their performance. Therefore, preliminary experiments were conducted on the workload-matched (11.1h work, 168h, airlock open) and the environment-matched condition (6.9h work, 24h, air circulation) to monitor physio-psychological changes. As a result, both experiment types were conducted as scheduled without any major problems, and no serious physio-psychological disorders were observed in the eco-nauts. One week closed habitation experiments will be performed as a preliminary step toward much longer (max. 4 months) experiments.
Technical Paper

Estimation of Water Circulation Based on Experimental Results from Sequential Crop Cultivation, Closed Goat Breeding and Simulated Habitation Using CEEF

2004-07-19
2004-01-2349
Closed habitation experiments are to be carried out using Closed Ecology Experiment Facilities (CEEF) from FY2005 to FY2009. The last target of duration of closed habitation is four months. Preliminary study and testing have been conducted in order to carry out the closed habitation experiments. The CEEF has three closed plantation chambers (PC-A, B and C) with artificial lighting solely having each cultivation area of 30 m2 and a closed plantation chamber (PC-F) with both natural lighting and supplemental artificial lighting having a 60-m2 cultivation area. A ‘stable’ period of sequential crop cultivation was maintained for four weeks in a trial experiment conducted in FY2003 using the Plantation Module (PM), in which rice, soybean and crops including rice sapling, soybean sapling, soybean, peanuts and safflower were cultivated in PC-A, PC-B, PC-C and PC-F, respectively. Amount of total clean water input to PM was 741 L day−1 on the average for the period.
Technical Paper

CELSS Experiment Model and Design Concept of Gas Recycle System

1985-07-01
851393
In order to prolong the duration of manned missions around the earth and to expand the human existing region from the earth to other planets such as a Lunar Base or a manned Mars flight mission, the CELSS becomes an essential factor of the future technology to be developed through utilization of Space Station. The preliminary SE&I (System Engineering and Integration) efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space Station Experiments and for getting the time phased mission sets after Fy 1992. The results of these studies are breifly summarized and thereafter, the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.
Technical Paper

Preliminary research on Energy Metabolism of Candidate Animals in Closed Ecology Experiment Facilities (CEEF)

2000-07-10
2000-01-2336
The basal metabolism of the Candidate Animal is mainly on energy metabolism that was estimated for future animal breeding in CEEF as preliminary research. The amounts of gas exchange in the respiration and heat production of the Shiba goat (native Japanese goat) were analyzed to predict energy and material flow of the animal breeding system in the Closed Ecology Experiment Facilities (CEEF). Experimental animals were fed Timothy hay or inedible parts of rice cultivated in CEEF. The feces and urine were collected during the 7-day metabolism measurement period after a 2-week preliminary breeding period. The O2 consumption, CO2 production, and CH4 production were measured by a mass spectrometric respiration gas analysis system on the 7th day of the metabolism measurement period. Heat production was also obtained from these data. O2 consumption, CO2 production and CH4 production were 100.3 - 153.8 L, 127.2 - 174.0 L and 5.7 - 10.8 L per day (at 0°C, 0.101MPa), respectively.
Technical Paper

Development of Simulation Model and Its Application to an Integration Test Project of CEEF

2000-07-10
2000-01-2334
Simulation of material circulation for a closed experiment using CEEF consisting of a plant and human system was performed. Initial set of materials contained in CEEF was decided by a decision procedure. Before the closure where the plant system is operated independently, the plant system (CPEF) needs gas exchange of O2 and CO2 with the outside. After the closure where the plant and human system are operated in a cooperation mode with mutual material exchange, no exchange of materials is needed. The closure time corresponds to the longest cultivation period to be cultivated in CPEF.
Technical Paper

Plant Nutrient Solution Production Subsystem and Mineral Recycling in CEEF

2000-07-10
2000-01-2335
In the Closed Ecology Experiment Facilities (CEEF), waste materials such as plant inedible parts, feces and urine of animal and human, and garbage are to be decomposed to inorganic materials by a physical and chemical (P/C) process; Wet Oxidation (W/O). It is known that significant part of nitrogen (N) in the waste materials is reduced to gaseous nitrogen (N2) through W/O process. There is also some deposition of minerals such as iron (Fe) and phosphorous (P) through W/O process. Nitrogen Fixation Subsystem (NFS) produces ammonia (NH3) which is one of end products of NFS, from N2 separated from module air and hydrogen (H2) derived from electrolyses of water, and also produces nitrate (HNO3) from a part of the NH3 and oxygen (O2) derived from electrolyses of water. As another end product of NFS, ammonium nitrate (NH4NO3) is produced from the HNO3 and a part of the NH3.
Technical Paper

Installation of Hydro-Sphere Experiment System

1999-07-12
1999-01-1984
As a part of CEEF, a hydro-sphere experiment system has been installed in the air-tight hydro-sphere chamber built in fiscal 1997. Environmental factors in the chamber such as air composition, temperature and humidity could be fully controlled from 360 to 2000ppmCO2, from 20 to 30°C and 70%RH respectively using air composite adjusting system and air-conditioner. In this chamber having 640m3, three aquariums having 20m3 volume each have been installed. One of those aquarium will be used for the sea water buffer, the other two will be used for breeding living organisms such as small animals and macro-algae. A water reclamation system also has been installed in addition to those aquariums, and sea water is to be circulated at the rate of 20m3/3days between those aquariums and this reclamation system in order to realize the simulated sea water eco-system. The water reclamation system is composed of a membrane filter and bio-filter.
Technical Paper

Effects of Small Disturbances Caused by Changes of Surrounding Conditions on the Small Positive Pressure Control System of the CEEF

1999-07-12
1999-01-1985
The closed ecology experiment facility (CEEF) has a small positive pressure control system consisting of rubber buffers and a mechanical subsystem. In the present study, effects of small temperature disturbances caused by changes of surrounding conditions on the pressure control system are investigated experimentally and in numerical simulations. Though solar radiation causes a pressure disturbance in the facility, choosing the proper diameter of ducts which connect the rubber buffers to the modules, the rubber buffers can follow fluctuations of low frequency, like daily atmospheric fluctuations and pressure changes caused by temperature control of the facility’s air conditioners, and can cut off those of high frequency due to changes of environmental conditions.
X